1,204 research outputs found

    Documentation of the GLAS fourth order general circulation model. Volume 1: Model documentation

    Get PDF
    The volume 1, of a 3 volume technical memoranda which contains a documentation of the GLAS Fourth Order General Circulation Model is presented. Volume 1 contains the documentation, description of the stratospheric/tropospheric extension, user's guide, climatological boundary data, and some climate simulation studies

    Documentation of the GLAS fourth order general calculation model. Volume 3: Vectorized code for the Cyber 205

    Get PDF
    Volume 3 of a 3-volume technical memoranda which contains documentation of the GLAS fourth order genera circulation model is presented. The volume contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A dictionary of FORTRAN variables used in the Scalar Version, and listings of the FORTRAN Code compiled with the C-option, are included. Cross reference maps of local variables are included for each subroutine

    Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code

    Get PDF
    Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined

    Nuclear effects in g1A(x,Q2)g_{1A}(x,Q^2) at small xx in deep inelastic scattering on 7^7Li and 3^3He

    Full text link
    We suggest to use polarized nuclear targets of 7^7Li and 3^3He to study nuclear effects in the spin dependent structure functions g1A(x,Q2)g_{1A}(x,Q^2). These effects are expected to be enhanced by a factor of two as compared to the unpolarized targets. We predict a significant xx dependence at 104÷103x0.210^{-4} \div 10^{-3} \leq x \leq 0.2 of g1A(x,Q2)/g1N(x,Q2)g_{1A}(x,Q^2)/g_{1N}(x,Q^2) due to nuclear shadowing and nuclear enhancement. The effect of nuclear shadowing at x103x \approx 10^{-3} is of an order of 16% for g1A=7n.s.3/2(x,Q2)/g1Nn.s.(x,Q2)g_{1A=7}^{n.s. 3/2}(x,Q^2)/g_{1N}^{n.s.}(x,Q^2) and 10% for g1A=3n.s(x,Q2)/g1Nn.s.(x,Q2)g_{1A=3}^{n.s}(x,Q^2)/g_{1N}^{n.s.}(x,Q^2). By imposing the requirement that the Bjorken sum rule is satisfied we model the effect of enhancement. We find the effect of enhancement at x0.125(0.15)x \approx 0.125 (0.15) to be of an order of 20(55)20 (55)% for g1A=7n.s.3/2(x,Q2)/g1Nn.s.(x,Q2)g_{1A=7}^{n.s. 3/2}(x,Q^2)/g_{1N}^{n.s.}(x,Q^2) and 14(40)14 (40)% for g1A=3n.s(x,Q2)/g1Nn.s.(x,Q2)g_{1A=3}^{n.s}(x,Q^2)/g_{1N}^{n.s.}(x,Q^2), if enhancement occupies the region 0.05x0.20.05 \leq x \leq 0.2 (0.1x0.20.1 \leq x \leq 0.2). We predict a 2% effect in the difference of the scattering cross sections of deep inelastic scattering of an unpolarized projectile off 7^7Li with MJM_{J}=3/2 and MJM_{J}=1/2. We also show explicitly that the many-nucleon description of deep inelastic scattering off 7^7Li becomes invalid in the enhancement region 0.05<x0.20.05 < x \leq 0.2.Comment: 29 pages, 5 figures, RevTe

    Towards a self-consistent model of the convective core boundary in upper-main-sequence stars

    Full text link
    There is strong observational evidence that convective cores of intermediate-mass and massive main-sequence stars are substantially larger than standard stellar-evolution models predict. However, it is unclear what physical processes cause this phenomenon or how to predict the extent and stratification of stellar convective boundary layers. Convective penetration is a thermal-time-scale process that is likely to be particularly relevant during the slow evolution on the main sequence. We use our low-Mach-number Seven-League Hydro (SLH) code to study this process in 2.5D and 3D geometries. Starting with a chemically homogeneous model of a 1515 M_\odot zero-age main-sequence star, we construct a series of simulations with the luminosity increased and opacity decreased by the same factor ranging from 10310^3 to 10610^6. After reaching thermal equilibrium, all of our models show a clear penetration layer. Its thickness becomes statistically constant in time and it is shown to converge upon grid refinement. As the luminosity is decreased, the penetration layer becomes nearly adiabatic with a steep transition to a radiative stratification. This structure corresponds to the adiabatic ,,step overshoot'' model often employed in stellar-evolution calculations. The thickness of the penetration layer slowly decreases with decreasing luminosity. Depending on how we extrapolate our 3D data to the actual luminosity of the initial stellar model, we obtain penetration distances ranging from 0.090.09 to 0.440.44 pressure scale heights, which are broadly compatible with observations.Comment: 10 pages, 12 figures, submitted to A&

    Well-balanced treatment of gravity in astrophysical fluid dynamics simulations at low Mach numbers

    Full text link
    Accurate simulations of flows in stellar interiors are crucial to improving our understanding of stellar structure and evolution. Because the typically slow flows are merely tiny perturbations on top of a close balance between gravity and the pressure gradient, such simulations place heavy demands on numerical hydrodynamics schemes. We demonstrate how discretization errors on grids of reasonable size can lead to spurious flows orders of magnitude faster than the physical flow. Well-balanced numerical schemes can deal with this problem. Three such schemes were applied in the implicit, finite-volume Seven-League Hydro (SLH) code in combination with a low-Mach-number numerical flux function. We compare how the schemes perform in four numerical experiments addressing some of the challenges imposed by typical problems in stellar hydrodynamics. We find that the α\alpha-β\beta and deviation well-balancing methods can accurately maintain hydrostatic solutions provided that gravitational potential energy is included in the total energy balance. They accurately conserve minuscule entropy fluctuations advected in an isentropic stratification, which enables the methods to reproduce the expected scaling of convective flow speed with the heating rate. The deviation method also substantially increases accuracy of maintaining stationary orbital motions in a Keplerian disk on long timescales. The Cargo-LeRoux method fares substantially worse in our tests, although its simplicity may still offer some merits in certain situations. Overall, we find the well-balanced treatment of gravity in combination with low Mach number flux functions essential to reproducing correct physical solutions to challenging stellar slow-flow problems on affordable collocated grids.Comment: Accepted for publication in A&

    Nuclear shadowing in polarized DIS on ^6LiD at small x and its effect on the extraction of the deuteron spin structure function g_{1}^{d}(x,Q^2)

    Get PDF
    We consider the effect of nuclear shadowing in polarized deep inelastic scattering (DIS) on ^6LiD at small Bjorken x and its relevance to the extraction of the deuteron spin structure function g_{1}^{d}(x,Q^2). Using models, which describe nuclear shadowing in unpolarized DIS, we demonstrate that the nuclear shadowing correction to g_{1}^{d}(x,Q^2) is significant.Comment: 17 pages, 2 figure

    The Anisotropic Spatial Distribution of Hypervelocity Stars

    Full text link
    We study the distribution of angular positions and angular separations of unbound hypervelocity stars (HVSs). HVSs are spatially anisotropic at the 3-sigma level. The spatial anisotropy is significant in Galactic longitude, not in latitude, and the inclusion of lower velocity, possibly bound HVSs reduces the significance of the anisotropy. We discuss how the observed distribution of HVSs may be linked to their origin. In the future, measuring the distribution of HVSs in the southern sky will provide additional constraints on the spatial anisotropy and the origin of HVSs.Comment: 4 pages, accepted to ApJ Letter

    A finite-volume scheme for modeling compressible magnetohydrodynamic flows at low Mach numbers in stellar interiors

    Full text link
    Fully compressible magnetohydrodynamic (MHD) simulations are a fundamental tool for investigating the role of dynamo amplification in the generation of magnetic fields in deep convective layers of stars. The flows that arise in such environments are characterized by low (sonic) Mach numbers (M_son < 0.01 ). In these regimes, conventional MHD codes typically show excessive dissipation and tend to be inefficient as the Courant-Friedrichs-Lewy (CFL) constraint on the time step becomes too strict. In this work we present a new method for efficiently simulating MHD flows at low Mach numbers in a space-dependent gravitational potential while still retaining all effects of compressibility. The proposed scheme is implemented in the finite-volume Seven-League Hydro (SLH) code, and it makes use of a low-Mach version of the five-wave Harten-Lax-van Leer discontinuities (HLLD) solver to reduce numerical dissipation, an implicit-explicit time discretization technique based on Strang splitting to overcome the overly strict CFL constraint, and a well-balancing method that dramatically reduces the magnitude of spatial discretization errors in strongly stratified setups. The solenoidal constraint on the magnetic field is enforced by using a constrained transport method on a staggered grid. We carry out five verification tests, including the simulation of a small-scale dynamo in a star-like environment at M_son ~ 0.001 . We demonstrate that the proposed scheme can be used to accurately simulate compressible MHD flows in regimes of low Mach numbers and strongly stratified setups even with moderately coarse grids

    RhoJ interacts with the GIT-PIX complex and regulates focal adhesion disassembly

    Get PDF
    RhoJ is a Rho GTPase expressed in endothelial cells and tumour cells, which regulates cell motility, invasion, endothelial tube formation and focal adhesion numbers. This study aimed to further delineate the molecular function of RhoJ. Using timelapse microscopy RhoJ was found to regulate focal adhesion disassembly; small interfering RNA (siRNA)-mediated knockdown of RhoJ increased focal adhesion disassembly time, whereas expression of an active mutant (daRhoJ) decreased it. Furthermore, daRhoJ co-precipitated with the GIT–PIX complex, a regulator of focal adhesion disassembly. An interaction between daRhoJ and GIT1 was confirmed using yeast two-hybrid experiments, and this depended on the Spa homology domain of GIT1. GIT1, GIT2, β-PIX (also known as ARHGEF7) and RhoJ all colocalised in focal adhesions and depended on each other for their recruitment to focal adhesions. Functionally, the GIT–PIX complex regulated endothelial tube formation, with knockdown of both GIT1 and GIT2, or β-PIX phenocopying RhoJ knockdown. RhoJ-knockout mice showed reduced tumour growth and diminished tumour vessel density, identifying a role for RhoJ in mediating tumour angiogenesis. These studies give new insight into the molecular function of RhoJ in regulating cell motility and tumour vessel formation
    corecore